Noncontact atomic force microscopy: Stability criterion and dynamical responses of the shift of frequency and damping signal

نویسندگان

  • G. Couturier
  • R. Boisgard
  • L. Nony
  • J. P. Aimé
چکیده

The aim of this article is to provide a complete analysis of the behavior of a noncontact atomic force microscope ~NC-AFM!. We start with a review of the equations of motion of a tip interacting with a surface in which the stability conditions are first revisited for tapping mode. Adding the equations of automatic gain control ~AGC!, which insures constant amplitude of the oscillations in the NC-AFM, to the equations of motion of the tip, a new analytical stability criterion that involves proportional and integral gains of AGC is deduced. Stationary solutions for the shift of frequency and for the damping signal are obtained. Special attention is paid to the damping signal in order to clarify its physical origin. The theoretical results are then compared to those given by a virtual machine. The virtual machine is a set of equations solved numerically without any approximation. The virtual machine is of great help in understanding the dynamical behavior of the NC-AFM as images are recorded. Transient responses of the shift in frequency and of the damping signal are discussed in relation to the values of proportional and integral gains of AGC. @#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General theory of microscopic dynamical response in surface probe microscopy: from imaging to dissipation.

We present a general theory of atomistic dynamical response in surface probe microscopy when two solid surfaces move with respect to each other in close proximity, when atomic instabilities are likely to occur. These instabilities result in a bistable potential energy surface, leading to temperature dependent atomic scale topography and damping (dissipation) images. The theory is illustrated on...

متن کامل

جداسازی یون توسط دام چهار قطبی در حضور نیروی میراکننده

Dynamical behavior of particles in a Paul trap has been investigated by solving the set of differential equations considering the effect of damping force. Positions of the trapped ions as a function of time, ion trajectories and the phase space curves in the first stability region have been obtained in the presence of the damping force. The region of stability for r and z components as well as ...

متن کامل

Interplay between nonlinearity, scan speed, damping, and electronics in frequency modulation atomic-force microscopy.

Numerical simulations of the frequency modulation atomic force microscope, including the whole dynamical regulation by the electronics, show that the cantilever dynamics is conditionally stable and that there is a direct link between the frequency shift and the conservative tip-sample interaction. However, a soft coupling between the electronics and the nonlinearity of the interaction may signi...

متن کامل

Forces and frequency shifts in atomic-resolution dynamic-force microscopy

True atomic resolution in vacuum with a force microscope is now obtained routinely by using the frequency shift of an oscillating cantilever as the imaging signal. Here, a calculation is presented that relates the frequency shift to the forces between tip and sample for both large and small oscillation amplitudes. Also, the frequency versus distance data for van der Waals dominated tip-sample i...

متن کامل

Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy

The noise of the frequency-shift signal Δf in noncontact atomic force microscopy (NC-AFM) consists of cantilever thermal noise, tip-surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density d(z) at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density d(Δ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003